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1 Introduction

In this essay we shall discuss mathematical models of card-shuffling. The basic
question to answer is ”how many times do you need to shuffle a deck of cards
for it to become sufficiently randomized?”. This obviously depends on what we
mean by shuffling and sufficiently randomized so we shall dwell quite a bit on
these points too.

In section 2 we will name and describe some popular shuffles. Then, in
section 3, we describe the general framework for analyzing shuffles as random
walks on Markov chains with the set of deck permutations as the state space.
The payoff is section 4 that reviews some quite intriguing results on specific
shuffles. Section 5 concludes with some general thoughts and comments.

2 Types of Shuffles

On can scramble the order of a deck of n cards in any manner at all and call it
a shuffle. The following is a description of the most popular ones:

Riffle Shuffle Split the cards into two halves and interlace them (Aldous and
Diaconis 1986).

Overhand Shuffle Hold the deck of cards in your right hand. Slide a small
pack of cards off the top into your left hand. Repeat this process, putting
each successive packet on top of the previous one so, until all the cards
are in your left hand (Pemantle 1989).

Transposition Shuffle For 1 ≤ i ≤ n− 1, pick a random card at position j in
[i + 1, n] and transpose the cards at i and j (Knuth 1981).

Top-in Shuffle Take a card from the top and insert it at a random position in
the deck (Aldous and Diaconis 1986).

In each case above, what is described constitutes one shuffle. One occasion-
ally encounters sloppy usage of the terminology in that a series of shuffles is
also referred to as ”a shuffle”. As shall be seen later, we will also interpret a
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shuffle more technically as simply a probability measure (involving no hands,
algorithms, transformations or other processes).

The top-in shuffle is important in the theoretical analysis of randomization
(see below). The transposition shuffle is a strong scrambling algorithm guar-
anteed to produce a uniform distribution with only n random bits (thus the
preferred choice for computer card-shuffling). In the overhand shuffle, the order
of the cards only gets reversed in clumps. Thus, understandably, by far the
most popular among humans is the riffle shuffle.

The riffle-shuffle was given an exact interpretation by Gilbert and Shan-
non(Gilbert 1955) and independently by Reeds (Reeds 1981) as follows:

GSR-model Begin by choosing an c from 0, 1, . . . , n according to the binominal
distribution i.e P (X = c) =

(
n
c

)
/2n. Holding c cards in the left hand and

n − c cards in the right, drop a card from a given hand with probability
proportional to packet size. Thus, the chance that a card is first dropped
from the left hand packet is c/n. If this happens, the chance that the next
card is is dropped from the left packet is (c− 1)/(n− 1) and so on.

The chance factor in the outcome is strong. In contrast, series of perfect riffle
shuffles, where the deck is cut exactly in the middle and cards are perfectly
interleaved, are not interesting. This is because 8 consecutive perfect riffle
shuffles will restore a standard 52-deck to its original order!

In the GSR-model, we will cut a 52-card deck in the middle in only
(
52
26

)
/252 ≈

11% of the time, and even if so we can expect two consecutive cards from the
same hand to be dropped at almost every second drop. Because drops are
probabilistic, proportional to packet size.

Moreover, the GSR is a realistic model for how professional card players
actually shuffle cards. Empirical data on how often pairs of cards are dropped
in practice can be found in (Epstein 1995). But it must be acknowledged that
some realism has been sacrificed in order to promote a mathematically tractable
formula. For instance, it would perhaps be more realistic to have a tendency
for successive cards to be dropped from opposite hands, independent of packet
size.

3 Modelling Shuffling with Markov Chains

3.1 Orders, Permutations and Shuffles

A deck of n cards can be ordered in n! ways. The deck comes in some order,
we (perhaps repeatedly) shuffle it, and then it comes out in some order. The
outcome order also is dependent on the type of shuffle, the random data fed into
it, and number of shuffles. In fact, the aim is to look at what happens when
we vary shuffle methods and iterations. Since we are not interested in looking
at shuffles for some special set of initial deck orders, we shall hold the initial
order arbitrary. A reordering of an arbitrary sequence is a permutation, i.e a
bijective function from an n-length sequence to an n-length sequence. But, as is
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customary, permutations are written in bracket notation. So, for example, the
5-element permutation:

i 1 2 3 4 5
π(i) 2 3 4 5 1

that changes an ordering 12345 to 23451 as well as 54231 to 42315 will be
written π = [23451].

As shuffle can now be seen as a probability measure on the set of permu-
tations. Thus, a shuffle is not a stochastic mapping between orders, but plain
and simple a probability measure on a set of permutations. If you have a deck
in some order, to shuffle it is to pick a permutation according to the measure
and permute your deck with it.

Any shuffle will induce a probability distribution on the n! permutations of
the deck. For exact shuffles the distribution will trivially be 1 for some permu-
tation and 0 for the rest. But for shuffles which have a stochastic element in
them, this distribution will be more interesting. For example, one riffle shuffle
will introduce non-zero probabilities for some permutations whereas some per-
mutations cannot occur after only one riffle shuffle. A permutation that cannot
occur after only one riffle shuffle on 6 cards is [563412], because the original or-
der, called [123456] would be split in two packets. It’s clear from the interleaving
that the relative order within each packet cannot be changed – there can only
be cards inserted in-between. The [563412]-permutation does not correspond
to any split of [123456] into two packets, where each preserves internal packet
order, because it has scrambled order in three chunks.

Repeated riffle shuffles will intuitively make all orders possible at some point.
Also intuitively, there is no point when the probabilities will be exactly uniform.
The initial order will always be slightly favoured (cf. end of section 4.2.2). But
we will get arbitrarily close, so close that even if you are a computer, you know
how our riffle shuffle works in principle, you can hardly exploit the advantage.

3.2 Defining the Markov Chain

So a model of repeated shuffling is a Markov chain, i.e a sequence of random
variables Xt for integer t ≥ 0 that take values on the (finite) state space Sn (the
n! permutations on n elements). The transition probabilities, which are indeed
independent of t, are described below.

Let Q be the type of shuffling we are using, so Q is a probability density on
Sn. Q(g) ≥ 0 and

∑
Q(g) = 0 for g ∈ Sn. Set X0 to the identity permutation.

P (X1 = g) = Q(g)
P (X2 = g) = Q ∗Q(g) =

∑
h∈G Q(h)Q(gh−1)

Similarly P (Xk = g) = Qk∗(g) where Qk∗(g) is the repeated convolution:

Qk∗(g) = Q ∗Q(k−1)∗(g) =
∑
h∈G

Q(h)Q(k−1)∗(gh−1) (1)
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For example, over S3 and riffle shuffles we get the transition matrix:

p(i, j) [123] [213] [231] [132] [312] [321]
[123] 1/2 1/8 1/8 1/8 1/8 0
[213] 1/8 1/2 1/8 1/8 0 1/8
[231] 1/8 1/8 1/2 0 1/8 1/8
[132] 1/8 1/8 0 1/2 1/8 1/8
[312] 1/8 0 1/8 1/8 1/2 1/8
[321] 0 1/8 1/8 1/8 1/8 1/2

And, of course:

P (X0 = j) =
(

1 0 0 0 0 0
)

A computer simulation gives e.g:

P (X7 = j) = Q7∗ =
(

0.170593 0.166656 0.166656 0.166656 0.166656 0.162781
)

So after 7 riffle shuffles we are very close to the uniform distribution, but
the identity is still the most likely permutation.

Riffle shuffle, and all other interesting shuffles, obviously yield regular Markov
chains so we have:

Qk∗(g) → U(g) = 1/|Sn| as k →∞ (2)

A theorem first proved by Markov (Markov 1906).
The asymptotic result says nothing on how fast we approach uniformity. One

might perhaps think that the decrease to uniformity is smooth and uneventful,
but as we shall see below, what actually happens is that there is a sudden jump
towards uniformity.

In probability theory the traditional measure of how far two probability
measures are from each other is the variation distance, defined as:

‖Q1 −Q2‖ =
1
2

∑
|Q1(g)−Q2(g)| (3)

The 1
2 is so that 0 ≤ ‖Q1 −Q2‖ ≤ 1.

Suppose I know where in the deck a certain card i is, or equivalently, I know
which card is at a certain place i. The rest of the deck is randomized. This
defines a probability distribution Z over the permutations, where the (n − 1)!
permutations satisfying my requirement on i have equal probability but the rest,
(n− 1)(n− 1)! have 0. Now ‖Z−U‖ = 1− 1/n which is almost maximal. Some
may find it unintuitive that the variation distance is big yet we only knew one
out of the possibly very many n cards. I consider this view mistaken given that
knowing the place one card (or two etc) is very much information relative to
other constraints one may have on the giant set of permutations. Knowing the
place of a card is certainly more useful than knowing that, say, 17 cards (don’t
know which) are not part of any cycles of length 26.
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We mentioned above that the convergence to uniformity happens abruptly.
We can now make this precise by looking at the variation distance to the uniform
distribution as the number of shuffles increase. Define

dQ(k) def= ‖Qk∗ − U‖ (4)

for some shuffling method Q. From asymptotics we know that d(k) < ε for some
large enough k, in fact it decreases to 0 geometrically fast. But the relevant
question for card players is not ”exactly how close to random does one million
shuffles get you?”, but rather ”how many shuffles are enough?”.

We shall now proceed to show the ”abrupt decrease in variation distance”,
also known as a cut-off phenomenon, for some particular shuffles.

4 Analysis of Shuffles

4.1 The Top-in Shuffle

Deck has n cards. If we shuffle at least n log n times, then variation distance
will be exponentially small in c for another cn shuffles.

d(n log n + cn) ≤ e−c; all c ≥ 0, n ≥ 2 (5)

Proof: First we note that, if the card that was originally at the bottom, has
moved to the top and we do one more top-in shuffle, then the deck is perfectly
shuffled. All orders are equally possible. Define a random variable T as the
number of shuffles until the first time this happens. What the the probability
that this hasn’t happened after m = n log n + cn shuffles? To put it another
way, what is P (T > n log n + cn)?

It is easier to look at the negation, that is, what is the probability that the
top card has been at the top (at least once)? We can think of the process as an
m-length sequence of randomly picked places in the deck, that is a an m-length
base-n digit. We want to count the number of such sequences for which the
top card has been at the top at least once. A combinatorial argument shows
that this is n!

{
m
n

}
where

{
m
n

}
are the Sterling numbers of the second kind in

Knuth-notation (Graham, Knuth, and Patashnik 1994). The Sterling numbers
of the second kind yield the number of ways of arranging m different objects
into n-nonempty (unlabeled) subsets. The total number of sequences is of course
given by nm, so the probability that the initial bottom card has reached the top
and been re-inserted is:

n!
{

m
n

}
nm

(6)

There is a combinatorial identity for the expression in the numerator ((6.19)
p. 265 in (Graham, Knuth, and Patashnik 1994)):

n!
{m

n

}
=

n∑
k=0

(
n

k

)
km(−1)n−k (7)
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Plugging it in 6 we get ∑n
k=0

(
n
k

)
km(−1)n−k

nm
(8)

The terms in the sum can be re-ordered:∑n
k=0

(
n
k

)
(n− k)m(−1)k

nm

What we were really considering was the probability of this not occuring, which
is:

1−
∑n

k=0

(
n
k

)
(n− k)m(−1)k

nm

By putting them on the same denominator, canceling out the first term in the
sum, and switching signs, it simplifies to:∑n

k=1

(
n
k

)
(n− k)m(−1)k−1

nm

Now the terms in the sum decrease in value and alternate in sign, so of
course Sk ≥ Sn ≤ Sk+1 (odd k ≥ 1) where Sk if the sum of k first terms. We
need only stop at S1 to get the bound:

P (T > n log n + cn) =
Sn

nm
≤

(
n
1

)
(n− 1)m

nm
=

n(n− 1)m

nm
= n

(
n− 1

n

)m

≤ n exp(−m/n) = e−c (9)

The next-to-last inequality uses the fact that 1− x ≤ e−x for all numbers x.
There is a shorter, perhaps simpler, proof of P (T > n log n + cn) ≤ e−c in

(Aldous and Diaconis 1986). The idea is this: consider the waiting times for
each Ti, the (random) number of shuffles it takes from the time there are i− 1
cards below the original bottom card until there are i cards below it. Each Ti is
labeled and has a different geometric probability. Distribute shuffles over these
times (imagine for m = 5 shuffles, n = 3 times you put e.g 2 in T1 and 0 in
T2, 3 in T3). The problem can then be seen as distributing m units of shuffles
into n labeled boxes of step times. Failure of the top card to ever come to the
top happens when there is some Ti that doesn’t get any draws, that is, all the
other T:s used up all m draws. This probability can then be easily intutively
bounded by n(1− 1/n)m.

But wait a minute! Now we have only proved that m = n log n + cn shuffles
is enough, with high probability. Weren’t we going to say something about the
variation distance dQ(m)? We need a lemma saying that the probability that m
shuffles aren’t enough is greater than or equal to the variation distance after m
steps. This lemma holds if m, or rather the random variable T = the first time
the original bottom card comes to the top and is inserted, is a so-called strong
stationary time. Formally:
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Stopping Time T is a stopping time if, for each n, one can determine whether
or not T = n just by looking at the values of X0, . . . , Xn. In particular, to
determine whether or not T = n it is not necessary to know any “future”
values Xn+1, Xn+2, . . ..

Strong Stationary Time A Random Variable T is a strong stationary time
if (i) T is a stopping time (ii) XT is distributed as U, and (iii) XT is
independent of T.

Lemma: If T is a strong stationary time for the Markov chain Xn, then

‖πn − U‖ ≤ P (T > n) for all n (10)

This lemma is proved in (Aldous and Diaconis 1986). It is not lenghty, but
it is boring symbol manipulation. So with the above lemma, finally we get the
desired (5):

d(n log n + cn) ≤ e−c; all c ≥ 0, n ≥ 2 (11)

Similarly, one can show that n log n is not overkill, that many are necessary,
because:

d(n log n− cnn) → 1 as n →∞; all cn →∞ (12)

This means that if you shuffle only n log n−cnn times then, as n goes to infinity,
the probability that we are not finished, that is there are still j cards above the
original bottom cards, goes to one. When there are j cards that have not been
shuffled properly the variation distance can obviously be arbitrarily high i.e
arbitraily close to it’s maximum of 1. Remember that if I know one card, then
the variation distance is only off 1/n to its max. If I know two then it’s only
off by 1/n(n− 1) etc. A proof of (12) is beyond my present capability, and the
reader is referred to (Aldous and Diaconis 1986) for one that uses Chebyshev’s
inequality.

4.2 The Riffle Shuffle

Now that we have seen an example with the top-in shuffle, let’s look at the riffle
shuffle, which is the most popular. The asymptotic result, analoguous to that
of the top-in shuffle, is that roughly 3 log n

2 shuffles are necessary and sufficient.
The proof (Bayer and Diaconis 1992) is lengthy.

But what about the exact result for n = 52? Until a paper by (Bayer and
Diaconis 1992) an exact computation used to be intractable, even for computers,
due to the sheer size of the state space. The insight is that:

The probability of achieving a permutation π depends not on all
information in π but only on the number of rising sequences that π
has.
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4.2.1 Rising Sequences

So what is a rising sequence? A rising sequence of a permutation is a maximal
consecutively increasing subsequence. For cards, assume you have a deck in
some order labeled in increasing order, and perform a chosen permutation on
them. Pick any card, call it say x, and look for card x + 1 after it in the
deck. If you find it, repeat the procedure looking for x + 2 after x + 1 and
so on until you can’t find the next card. Then, go back to card x and look
for card x − 1 before it, and so on. When finished you have a rising sequence
x− i, x− i + 1, . . . , x, . . . , x + j − 1, x + j. It turns out that a deck breaks down
as a disjoint union of its rising sequences.

As an example, let’s say we have a deck labeled 12345678. We permute it
with the permutation [45162378]. The deck is now in order 45162378. We start
with a card, say 3, and look for 4 after it, but we don’t find it. However, we
find 2, and then 1 below it. So 123 is one rising sequence. Then suppose we
start with 6, we then get the rising sequence 45678 and that exhausts the cards.
So the permutation [45162378] has exactly two rising sequences. Note that this
permutation could be the result of a riffle shuffle with cut 3. It is also easily
seen that the result of one riffle must be a permutation with 2 rising sequences,
or the identity, with 1 rising sequence.

4.2.2 Introducing a-shuffles

The generalization of the riffle shuffle, called the a-shuffle is achieved as follows:
Cut the deck into a packets of (nonnegative) sizes b1, b2, . . . , ba, with the prob-
ability of this particular packet structure given by the multinominal density:(

n
b1,b2,...,ba

)
/an. Note that b1 + b2 + . . . + ba = n but some of the bi:s may be

zero. Interleave by dropping cards from each packet, one at a time, with proba-
bility proportional to packet size (relative to the total number of cards still left
to drop). This interleaving is also equivalent to riffling first packets b1 and b2

together, then that packet with b3, the resulting with b4 and so on. It is obvious
that the GSR-riffle shuffle is the a-shuffle with a = 2.

So, what is the relevance of the a-shuffle for a creature that is not a-handed?
The answer is that k repeated 2-shuffles are equivalent to one single 2k-shuffle.
In fact, the following is a theorem that can be proved with elementary combi-
natorics (can be found in e.g (Mann 1995)):

An a-shuffle followed by a b-shuffle is equivalent to a single ab-shuffle,
in the sense that both processes give exactly the same resulting prob-
ability density on the set of permutations.

We are now ready to state the exact result for achieving any permutation
by an a-shuffle:

The probability of achieving a permutation π when doing an a-shuffle
is given by

(
n+a−r

n

)
/an, where r is the number of rising sequences in

π.
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The proof, also using only elementary combinatorics, is given in (Mann 1995)
or (Bayer and Diaconis 1992) where it is stated that it is a generalization of
earlier work by Shannon. It should be noted that the probability

(
n+a−r

n

)
/an

is a monotone descreasing function of r. So if 1 ≤ r1 ≤ r2 ≤ n, then the
probability of a permutation with r1 rising sequences is always more probable
than one with r2.

4.2.3 The Final Result

Now we can get an exact formula for the distance of k riffle shuffles to the
uniform distribution:

dR(k) = ‖Rk∗ − U‖ =
1
2

n∑
r=1

〈n

r

〉 ∣∣∣∣(2k + n− r

n

)
/2nk − 1

n!

∣∣∣∣ (13)

Where
〈

n
r

〉
is the Eulerian numbers, using the notation from (Graham, Knuth,

and Patashnik 1994).
〈

n
r

〉
counts the number of permutations of n elements with

exactly r rising sequences, and there are various recursive formulas to compute
them.

The insight of the invariance of probabilities for different permutations with
the same number of rising sequences is what reduces the number of terms in
the sum from n! (≈ 1068 for n = 52) to n. Now it is tractable. Figure 1 has a
graph for dR(k) for k up to 10:
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Figure 1: dR(k) for k in [1, 10]. R is the riffle shuffle.

It is apparent that the graph makes a sharp cutoff, and is reasonably low at
k = 7 which is why “seven shuffles are enough to randomize a deck of cards”.
Seven shuffles are indeed enough for most kinds of games where you cannot
really exploit the kind of non-randomness that may still remain. The variation
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distance after 7 shuffle is ≤ 0.334 and Peter Doyle has invented a game specifi-
cally designed to make use of the more-than-random number of length-2 rising
sequences that still remain (described in (Mann 1995)).

On the other hand, if you do less than 7 shuffles, say 3 or 4, and think that
this is enough for most purposes you are on thin ice. There is a wonderful
card trick described in (Bayer and Diaconis 1992) that magicians have been
using since the beginning of the century, which exploits the highly predictable
outcome of only 3 or 4 shuffles.

4.3 Other Shuffles

In (Jonasson 1995) some generalizations on the riffle shuffle are discussed; such
as results on biased riffle shuffles. Then the cut is not binominal, but can have
an arbitrary distribution. Lower and upper bounds are given.

Since (Pemantle 1989), it has been known that at least O(n2) and at most
O(n2 log n) shuffles is necessary to randomize using the overhand shuffle (note
that this amount to thousands of shuffles for n = 52). But (Jonasson 2004) has
just recently shown, following a technique introduced by D. B. Wilson, that the
upper bound is also tight – so Θ(n2 log n) overhand shuffles are required.

The (Jonasson 2004) paper has references to studies of yet other shuffle types
that have appeared in the literature.

5 Comments

The cut-off point of the riffle shuffle for n = 52 is indisputable, but it is not
completely sharp. As n goes to infinity however, the variation distance curve
will have a square drop at the cut-off!

There are many other Markov chains that exhibit the peculiar cut-off phe-
nomenon in variation distance (also called threshold phenomenon), in their ap-
proach to stationarity, but there also those who do not. Why some do and
some don’t was still not fully understood according to Diaconis in 1996 (Diaco-
nis 1996). Examples and further discussion are in that paper and (Aldous and
Diaconis 1986).

It should also be mentioned that riffle-shuffling does not exhibit a threshold
phenomenon when looking at entropy rather than variation distance (Trefethen
and Trefethen 2000). That is, if we look at how the entropy decreases in the
number of shuffles, it decreases smoothly without any cut-off. Entropy is, as
usual, the number of decks an infinitely competent coder will have to transmit
on average, to encode one bit. This difference between variation distance and
entropy has been known to the card-shuffling community since the beginning. I
know of no argument as to why entropy should be the relevant measure rather
than variation distance1.

1The explanation in (Trefethen and Trefethen 2000) is hard to follow.
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